Conceptual Design of An Underwater Vehicle Powered by Water-breathing Ramjet
نویسندگان
چکیده
منابع مشابه
OPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE
In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...
متن کاملoptimized fuzzy control design of an autonomous underwater vehicle
in this study, the roll, yaw and depth fuzzy control of an au- tonomous underwater vehicle (auv) are addressed. yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. the discussed auv has four aps at the rear of the vehicle as actuators. two rule bases...
متن کاملDesign of optimal central guidance of an underwater vehicle in the modeled ship wake
The purpose of this paper is to provide a new algorithm for guidance of an underwater vehicle to reach its target, and demonstrate its effectiveness by simulation with a computer code. The meant of target in here is to chase a ship on the surface of the water. In order to do this, one of the most effective methods is to follow the ship wake which produced behind it. Disadvantages of wake guidan...
متن کاملDesign of Autonomous Underwater Vehicle
There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle) were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental pro...
متن کاملNonlinear Robust Tracking Control of an Underwater Vehicle-Manipulator System
This paper develops an improved robust multi-surface sliding mode controller for a complicated five degrees of freedom Underwater Vehicle-Manipulator System with floating base. The proposed method combines the robust controller with some corrective terms to decrease the tracking error in transient and steady state. This approach improves the performance of the nonlinear dynamic control scheme a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Society of Propulsion Engineers
سال: 2014
ISSN: 1226-6027
DOI: 10.6108/kspe.2014.18.4.050